More Causal Inference with Graphical Models in R Package pcalg

نویسندگان

  • Markus Kalisch
  • Martin Mächler
  • Diego Colombo
  • Alain Hauser
  • Marloes H. Maathuis
  • Peter Bühlmann
چکیده

The pcalg package for R (R Development Core Team 2014) can be used for the following two purposes: Causal structure learning and estimation of causal effects from observational and/or interventional data. In this document, we give a brief overview of the methodology, and demonstrate the package’s functionality in both toy examples and applications. This vignette is an updated and extended (FCI, RFCI, etc) version of Kalisch et al. (2012) which was for pcalg 1.1-4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Inference using Graphical Models with the R Package pcalg

The pcalg package for R (R Development Core Team (2010)) can be used for the following two purposes: Causal structure learning and estimation of causal effects from observational data. In this document, we give a brief overview of the methodology, and demonstrate the package’s functionality in both toy examples and applications.

متن کامل

Package ‘ pcalg ’

March 19, 2014 Version 2.0-2 Date 2014-03-12 Author Diego Colombo, Alain Hauser, Markus Kalisch, Martin Maechler Maintainer Markus Kalisch Title Methods for graphical models and causal inference Description This package contains several functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learni...

متن کامل

Learning high-dimensional directed acyclic graphs with latent and selection variables

We consider the problem of learning causal information between random variables in directed acyclic graphs (DAGs) when allowing arbitrarily many latent and selection variables. The FCI (Fast Causal Inference) algorithm has been explicitly designed to infer conditional independence and causal information in such settings. However, FCI is computationally infeasible for large graphs. We therefore ...

متن کامل

Interpreting and Using CPDAGs With Background Knowledge

We develop terminology and methods for working with maximally oriented partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from imposing restrictions on a Markov equivalence class of directed acyclic graphs, or equivalently on its graphical representation as a completed partially directed acyclic graph (CPDAG), for example when adding background knowledge about certain edge o...

متن کامل

Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges

We consider structure learning of linear Gaussian structural equation models with weak edges. Since the presence of weak edges can lead to a loss of edge orientations in the true underlying CPDAG, we define a new graphical object that can contain more edge orientations. We show that this object can be recovered from observational data under a type of strong faithfulness assumption. We present a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014